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ABSTRACT

The definitions of the reflection coefficients, in the absence of ribs and due
to ribs, of an incident pressure wave on a plane at the surface of a ribbed fluid

loaded panel are defined, examined, and computed. The incident pressure wave is

described by a plane wave and by a collimated beam. The results of representative

computations are displayed. Through these displays, some aspects of the influence

on the reflection coefficients caused by changes in the parameters that describe the

ribbed panel, the fluid loading, and the incidence are investigated. These aspects

include wavenumber aliasings and symmetries in some of the terms and factors that

compose the expressions for the reflection coefficients; the wavenumber of concern

lies across the ribs. Aliasings are present, however, only when the separations

between adjacent ribs are conditioned to be equal. Moreover, in some of these

aliased terms and factors, symmetry is present only when the incidence obeys

specific conditions. Disturbing either of these conditions tends to spoil the aliasing

and/or the symmetries in these terms and factors. It is shown, however, that the

aliasing and symmetry properties are invariant to changes in the parameters that

describe the ribbed panel and/or the fluid loading to which it is subjected.

The role that the phenomenon of pass and stop bands (bands in reference to

the frequency domain) plays in the reflection properties of ribbed fluid loaded

panels is of particular interest here. It is illustrated that in the frequency ranges of

pass bands, diffraction orders and aliasings tend to fade, and in the frequency

ranges of stop bands they are enhanced. Fluid loading subdues the pass and stop

bands; however, even substantial fluid loading does not eliminate these bands.

Finally, the relationship between the reflection coefficients defined on the surface of

the panel and on a control surface placed in the far-field is formulated and

discussed.
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INTRODUCTION

Recently the authors developed a formalism to account for the response of a ribbed panel

that may or may not be stratified by composite layers and which is subjected to external drives [1].

Herein the simplest model of a ribbed panel is considered and some aspects of the reflection of an

incident pressure wave by its surface is explored. The formalism is cast in terms of the "impulse

reflection function" R,, (k I k', ky I k.y, o I a;) of the panel so that an incident pressure wave

P1I(k', ky, co') yields the reflected pressure wave PRI (k, ky, (o) in the form

PRI (k, , f)) R11 (k I k, kyI,, ok I co) dk'dk'dco PI (k', ky. co') (1)

where the wave vector variable {k, ky} lies in the plane of the panel and is the Fourier conjugate of

the spatial vector variable {x, y}, and the frequency variable Co is the Fourier conjugate of the

temporal variable t, see Figs. 1 and 2. Both the incident pressure wave P11 and the reflected

pressure wave PRI are pressures assessed in the fluid on a plane that is adjacent to the top surface

of the panel. Quantities in reference to the top surface of the panel are dcsignated by a unit

subscript [1]. To assess the reflected pressure wave on a parallel control plane off the surface of

the panel, a simple propagation process needs to be applied [1]. It is further noted that the spectral

vector {k, ky, co} defines the reflected pressure wave. If the unribbed panel is uniform, the

attached ribs are uniform, parallel, and lie in the y-direction, and the ribbed panel and its

environment are temporally stationary, then

R11 (k 'ky Iky, o) I ) -- R11 (k Ik', 2) 5 (ky -ky) 8(o) - () (2

where 0 2  {k= , }. Using Eq. (2), Eq. (1) reduces to

PRI(k, 2 = f R,(k I k', 02 ) dk' P1 (k', 02) (3)

As expected, the integration remains only in the domain in which nonuniformities exist. It is
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convenient to abbreviate Eq. (3) in the form

PRi(k) = f R,(kjk) dk' P1i(k') (

where the spectral vector w, is suppressed as obvious. This kind of abbreviation is extensively

used in this paper. The functional form of R11 (k I k') is derived in Reference 1 to be

Rj(kfk') = R011(k) 5(k-k')+Rsll(klk') , (5)

where1

R011(k) = [1 -Z1f(k) {2Y 1(k) + S1p(k) G*(k) 2Sp(k)}] (6)

Rs11(k) = Z1f(k) S 1P(k) Gs(k I k') 2 SP1(k') (7)

The factors G. (k) and Gs(k I k') combine in the form

G(kjlk) = G*(k) 8(k-k') -Gs(klk') (8)

to yield the impulse response function of the ribbed panel so that the acceleration A(k) of the panel

to an external drive Pe(k') is obtained

A(k) = ioV(k) ; V(k)=fG(klk') dk' Pe(k') (9)

where V(k) is clearly the corresponding velocity of the panel. The factors S1p(k) and Sp1(k) are

transfer functions from the surface of the panel to the surface that is in contact with the fluid at the

top, and vice versa, respectively [1]. The surface impedance Zlf(k) is that of the fluid atop the

'The opportunity is taken to issue an erratum to Eq. (39a) of Ref. 1. In the third term of the first
of this equation, a factor of 2 was inadvertently omitted in front of the factor Spa(k). Equation (7),
in the text, stands corrected.
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panel and, finally, Y,, (k) is the (1,1)th element in the inverse of the surface impedance matrix

describing the stratified (composite) panel; the layers are defined by lumped surface impedances

and the panel itself is rendered blocked [1].

A BARE PANEL

In this paper a simple model is constructed of the ribbed panel. The model incorporates a

bare panel. For such a model one obtains

Y Sip(k) = S01( k) = 1 (10)

so that Eqs. (6) and (7) reduce to

RI(k) = 1 - 2Zif(k) G.(k) (11)

Rsj(kjk') = 2Zf(k) Gs(kjk') (12)

respectively. From Eqs. (5), (11), and (12) one obtains for this model

R11(klk') = [1 - 2Z f(k) G.*(k)] 8(k-k') + 27_f(k) Gs(kIk') (13)

To derive the explicit form of R,, (k I k') one needs to determine the explicit forms of Z1f(k), G.(k),

and Gs(k I k').

FLUID LOADED ISOTROPIC MEMBRANE-LIKE PANEL

In the model considered here, the panel is assumed to face a uniform fluid that occupies the

semi-infinite space atop, and below a vacuum prevails; see Fig. 1. For such an environment

G.(k) = [Zt(k) + Zp(k)] -1  Ze(k) = Zt (k) + Zbl(k)

Zt.=Z f(k) , Zb,(k) = 0 (14)
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where Zlf(k) is the surface impedance of the fluid in the plane of the panel
2 2 .

Zlf(k) = (pco/k) ; I = k2 + k 2
y

k3 = [(co/c) 2 - i]1 2 U [(c/) 2 - Iki2] + i[ 12 - (co/c) 2 ]1/2 U[jIk12-(o/c) , (15)

and ZP(k) is the mechanical surface impedance of the uniform panel and Z. is the loading on the

panel; Zt. on the top and Zbt on the bottom. In Eq. (15), p and c are the density and speed of

sound of the fluid and U is the unit step function. It is further assumed that the unribbed (uniform)

panel is membrane-like so that the mechanical surface impedance may be approximated in the form

ZP(k) = iorm [ 1 - { (k/kP)2 + (ky/kpy) 2 } ]

kP = kPO(l-il1) ; kPY =kP y(1-i y), (16)

where m is the mass per unit area and {k, kpy} is the free wavevector of the panel. For a

.aembran.. ; -"pon i. .cxure or longudinally

kPO= (c/c) ; kpy° = (co/cy) ' (17a)

in which {c 1 , czy} is the velocity of free wave piopagation in the relevant ft,-c of the resonse

and for a membrane simulating a plate responding in flexure

k= (occ/c)2 ; k;y° = (o)oYc 2) (17b)

in which oc and cy are the critical frequencies with respect to the speed of sound c of the fluid, in

the x-domain and y-domain, respectively. A membrane-like panel cannot support a moment

response. Thus, this choice for a panel greatly simplifies not only the expression for the

mechanical surface impedance of the uniform pane but, more significantly, it simplifies the

expression for the impulse response function Gs(k I k') of the ribs. This function may then be

stated in the form
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Gs(k lk') = (21c)-l 2 Ir G*(k) exp(ikxn) Rn Cn [G**(k')/g.] exp(-ik'x) , (18a)

where

Cnr = + •- x) Ri( -

,- xi) = [g,,(x - xi)/g] ; g = g-(0 2) = g 0(, -2)

Ri ; gi = (2r)- 1/2 Zi 9. (19)

g.(xj - xi)  (27c) - 1/2 fG,(k) dk exp [-ik(x 1 - xi)] (20)

In Eqs. (18) through (20) x, is the position in the x-domain of the (n)th rib; g,(xj - xi ) is the line

transfer admittance on the uniform panel from a line positioned at xi to a line positioned at xj; Zi is

the line impedance of the (i)th rib; and Ri is the reflection coefficient of the (i)th rib to an incident

wave in the panel. Again, the dependence of quantities on the spectral vector W2 is suppressed

[e.g., Ri(Q 2 ) = Ri] as a matter of abbreviation. When the panel is regularly ribbed (i.e., when the

ribs are identical, infinite in number, and the separations between adjacent ones are equal) Eq. (18)

becomes

Gs(k I k') = G-(k) [I + Z R. (k + r) ) ] - l fi ( k ' ) I 8 (k +  'n - k ' ) '(2a

J n(21a)

where it is selected that xo = 0 and

JI l - x n I= b  ; = jic, ; c =: = (27r/ b) , (22)

H.(k) =(Z/b) G.(k) ; Zn =Zj=Z (23)

Since the panel and its environment are simplistic -- a bare panel that is fluid loaded from atop

6



o,'y - one may dispense with the single and double subscripts of unity; e.g., in Eqs. (11) and

(12), Roll = R0, Rsil = R., and Z~f = Zf .

In Eq. (2 1a) the rcstriction that the panel needs to be membrane-like may be readily

removed. Indeed, the modification that needs to be made in Eq. (21a) to accommodate a plate-like

panel - a panel that can support a moment response - is that the equation for the mechanical

surface impedance of the panel be extended to include the flexural response of a plate; namely,

Zp(k) = icom [i - {(k/kP)2 + (ky/kpy) }2 ] (24)

and the surface impedance ratio H,(k) to include the line moment impedance ZM of the ribs;

namely,

Hoo (k) = (Z - ik Zm)/b ] G.,(k) (25)

[cf. Eqs. (16) and (23), respectively, and References 2 and 3.] Removing the corresponding

restrictions in the case of Eq. (18a) is more complicated [1,2].

FIRST ORDER MODELS

Situations arise in which models of ribbed panels may be devised in a manner that

suppresses natural phenomena so that simplified descriptions are obtained. Situations of this kind

may be instituted to derive a formalism from which approximations to more complicated

descriptions may be initiated. However, these situations may also be instituted to derive a contrast

with the correspondng more complicated descriptions so that phenomena of particular interest may

be pin pointed [4,5]. The first order models considered here generally fall into the second category

for the deployment of simplified models. In the first order models, all interactions among ribs are

artificially removed [4]. The removal of all interactions, as specified, renders Eq. (18a) to be
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Gs(k Ik') = (2n)- 2 z G.(k) R [G.>(k')/gj] exp[ixa(k-k')] ; R = 8nr (18b)

and renders Eq. (21a) to be

Gs(klk')--G.(k)[l+g0]-IH .(k');8(k+Kn - k ' ) ; go=gi '  (2 1b)

where the quantities and parameters were just defined in the preceding sections. A few

computations involving Eqs. (18b) and (2 lb) are carried out for contrast with those involving Eqs.

(18a) and (21a), respectively; the latter set describes the more natural model.2 [It is noted that the

transition from Eq. (18b) to Eq. (2 1b), as the appropriate conditions of regularity are finally

reached, is much simpler than the corresponding transition from Eq. (18a) to Eq. (21a); the

transition in the former set is a snap.]

PLANE AND COLLIMATED BEAM OF INCIDENT PRESSURE WAVES

The pressure due to a plane incident wave on a control plane placed parallel to the surface

of the panel may be stated in the forn

P1 (k", L2) = P1o 8 (k' - k, ) (ky' - kyI  (0 o (26)

where

k, = (0 1/c) sin(0 1) cos(Q) ; ky = (w1I/c) sin(6,) sin(41 ) , (27)

the angular vector { 01, 01 1 defines the angles of incidence and o is the tone of the wave, see

21t is to be understood that situations may be conceived in which a proper model and its
corresponding first order model may, in the limit, coincide. For example, if the panel is assigned a
point reacting surface admittance G. that is independent of the wavenumber k, then the proper
model and its corresponding first order model coincide. This subject matter is not pursued here

any further.
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Fig. 2. It may be convenient and instructive to employ also a collimated beam of incident pressure

wave. In a simple case of collimation, the expression for P, (k', L2) remains separable in the form

P)(k', Lo P10 Fx(k'- k) Fy(k; -kY I ) Ft(°'-o)) ' (28)

where, for example,

Fa(z) = exp(-iqaz) (xz) - 1 sin(Laz/2) a = x, y, or t ;qa Xc, Yc, or -t c  (29)

In Eq. (29), the constants xc, yc, and tc indicate the "center of the coordinate" in the x-, y-, and t-

domain, respectively; the lengths.L x and Ly are the spatial apertures in the x-and y-direction,

respectively, and the time L is the "temperal aperture" of the collimated beam It is noted that

exp(-iqaz) (nz) - 1 sin(Laz/2) - B(z) (30)

so that if Lx, Ly, and Lt are carried to infinity, in the limit Eq. (28) approaches and becomes

Eq. (26). It is noted that Fa(z) has the dimensionality of Lo. It is, therefore, convenient to define

Fa(z) = (22t/La) Fa(z) ; Fa(z) 8(z) = 8(z) (31)

where Fa(z) is a dimensionless quantity.

REFLECTION COEFFICIENTS DUE TO RIBS

If the plane incident pressure wave P is as stated in Eq. (26), then the reflected pressure

wave PR is derived from Eqs. (2), (4), and (5) in the form

PR(k, 0@2) = P1 0 (0 2 1)R(k I k1, C021) 8(ky - kyl) B(oC oi- ) (32a)

9



where

R (k I kl L21) =  R.(k I kR, 0,2 1) + Rs k I k- 1 ) ;

R.,(ckk, W215 R- k , 2d)8 (k -kI )(33a)

Again, provided the dependence of quantities on LoI [= {kyj, o}] is obvious, this dependence

may be suppressed and the quantity be superscripted by I to indicate this specific dependence; e.g.,

Rs(k I kI, kyl, =ol ) R s(k I k). In this abbreviation, Eq. (32a) may be stated as

PR0k, 992) = PI0 RX~ kk) 8(k- kyl) 8((o-"%) ,(32b)

where

R I Ik)= R k0)+RIsckjkI) R k )=_ R kj)S~k-kj)

The quantity R0(k1 ) is commonly referred to as the specular reflection coefficient of the uniform

panel. In the absence of ribs, this quantity may be defined in the form

ii (kl Ik,) =(27r/Lx.) RI(k I kl)"--+ (k) R!s(k Ik,)-a0 '(34)

where L is "the aperture" of the uniform panel in the x-domain. In analogy, the reflection
S-I

coefficient R s (k I kl) in lieu of the ribs may be defined as

R,(kIk ) = (2n/Ix)R'(kIk ) (35)

where L'x is the total aperture of the ribs; namely

Lx = IXp- XNI = (xn4 1 -x.) (36)

In Eq. (36) xp designates the position of one end-rib and xN the position of the other end-rib. It is

apparent that the normalization of R. and R, is usually different, except when the ribs span the

10



entire extent of the uniform panel; e.g., when the panel is regularly ribbed. However, even when

the normalization is different, the estimation of the reflection in terms of the reflection coefficient

does not cause any difficulty. Excepting specular reflection, the reflection is entirely described in

terms of the reflection coefficient R's (k I k1) due to ribs. Indeed, in this paper many of the
-I

computed illustrations are centered on Rs (k I k,) and the normalization stated in Eqs. (35) and (36)

is then used.

The measure of incompatibility that besets the definition of the reflection coefficients, when

the aperture of the ribs is finite, may be removed somewhat by using a collimated form for the

incident pressure wave. Moreover, the use of this type of incident pressure wave may render the

model phenomenologically more like to actual situations. For the purpose of this paper it suffices

to introduce collimation in the x-domain only. (The generalization to include collimations in the y-

domain and the t-domain can be readily introduced at a cost of some increase in cumbersomeness.)

The incident pressure wave is thus stated in the form

P, (k', P' = F, (k' - kI ) 8(;-k,(7

[cf. Eqs. (26) and (28).] From Eqs. (2), (4), (5), and (37), one obtains Eq. (32b) with

RI I I

R(k j) =R0 x(kFI(k 1)R,,kI jIl x(k kj) l (kl Fx(k - ki)

RIsx( k k ) f R' (k I[k') dk' Fx (k'- k, (8

replacing Eq. (33b). The reflection coefficient R (k I k,) of the ribbed panel to an incident

pressure wave of the form expressed in Eq. (37) is then simply

R (kIk1 )=R' (kIkl) = (27r/Lx)Rx(k ki)

x(klkl ) = (27/Lx)R 0x(kjkI) ; Rs(kjkj) = (2r/LX) RRX(kjkl) (39)
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The term R I is the reflection coefficient in the absence of ribs and RS, is the reflection coefficient

due to ribs. In the formalism here developed, these terms can be so separated, which is a

-1substantial simplification. It is observed that the reflection coefficient Rx (k) k1), as defined in

Eq. (38), is dependent on the structure of the incident pressure wave. The definition in Eq. (39) is

particularly useful if Lx = IJx, where Lx is as stated in Eq. (36). In this case the aperture of the

incident pressure wave matches the aperture of the ribs on the panel and, therefore, the normalizing

apertures in the first and the second terms in the first of Eq. (38) are identical.

It is interesting to note that Eq. (38) may be alternately obtained. In this derivation one

starts with Eq. (33) and proceeds to impose on this equation a filtering window in the x-domain.

If the window is similar to that imposed on the plane incident pressure wave described in Eq. (37),

Eq. (38) is derived from Eq. (33). In this alternate procedure, the physical interpretation of

Eq. (38) is slightly modified. The modification is commensurate with that resulting from inserting

a filter in the input versus inserting the same filter in the output.

EXPLICIT EXPRESSIONS FOR THE REFLECTION

COEFFICIENTS AND COMPUTATIONAL PROCEDURES

Using Eqs. (12) and (35), and Eqs. (18a) and (18b) one obtains

-I I =1R., (k Ikj) = A**(k) R, (k Ikj) ,(40)

IA.(k) O 0ckG.() (41)I II

R' Cr exp[i (kxn-klXr)], (42a)
R s (k I k j ) - ( 8 7 )  [GI kI)Igi=I R' expl'xn k-kl ] ( 42b)

where Zf , Go g,0 , RD , Cnr t and Lx , are defined explicitly in Eqs. (14) through (20), and

(36).
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Using Eqs. (11) through (15), (21), (38), (39), and (41), one obtains

R,(k I k1) = Rox(k I kI)+s(k k1) (43)

1-I

-I I -=I
RsIX(klkj) =A.(k) Rsx0klkl) ,(45)

Bis (k) (46a)

(46b)

j 0(47a)

where G, and !, are defined explicitly in Eqs. (14) through (17), (21) through

(23), (31), and (39).

The dual representation of the reflection coefficients as expressed in Eqs. (40) and (42) and

Eqs. (43) through (46) may assist in examining, among other features, the relationship between

introducing the finiteness of the structure in terms a finite aperture of ribs, on the one hand, and in

terms of a collimated incidence of a finite aperture on the other. However, comparing results

issued by Eqs. (40) and (42) with those issued by Eqs.(43) through (46), one finds a fundamental

difficulty. Equations (43) through (46) readily accounts for fluid loading; fluid loading in spectral

space is, with the exception of the factor B01 in Eq. (46b), accounted for simply by an algebraic

term in the surface admittance of the panel. On the other hand, the evaluation of the line transfer

admittance g(xj - x) , with fluid loading in place, presents a layer of computational difficulties.

[cf. Eq. (20).] In this sense the evaluations of gL and P and, in particular, the evaluations of CIr

in Eq. (42) are cumbersome [6,7]. In order to afford a comparison between the computational

13



results of Eqs. (40) and (42) and those of Eqs. (43) through (45), without completely ignoring

fluid loading in Eq. (42) and in B0, it is necessary to modify this equation and BI to accommodate

some aspects of fluid loading even if only heuristically and over a limited range in the

wavenumber-frequency (k-w) domain.. Fluid loading may be largely accounted for by evaluating

I II Ig90, R , and Cne which appear in Eq. (42), and by evaluating j in B0, which appears in

Eq. (45b), as if fluid loading is absent and then merely modifying, in these quantities, the mass per

unit area m and the free wavenumber kp, of the uniform panel as follows:

m -- m [1 + (a0Jco)c 2 c] ; kp0 - k 0 [1 + (oc/o) lCe] 1/l (48)

[cf. Reference 3.] In this paper the reflection of a pressure wave by the surface of a ribbed panel is

examined by performing computations of R, (k Ikl), as stated in Eqs. (40) and (42), and of

Rsx (k Ik1) and Rx (k I k,), as stated in Eqs. (43) through (46). However, before starting

computations the nature of a few individual factors in the expressions for these quantities need

examining. This examination may help readers to decipher the subsequent displays of the

computations of these quantities. Also, it may allow for a few observations of import to be made a

priori. Such observations correspond to those already made in References 2 and 3, again

emphasizing the basic significance and the common ground that the impulse response function

plays in the formalism dealing with all the various responses of a structure. The various responses

are generated, in the main, in consequence of differing drives to which the structure is subjected.

If the unribbed panel is subjected to an external drive Pe(k), then the drive (pressure) Pf(k)

that the motion of the panel will generate on its surface is given by

P~f(k) -- A.(k) P,' (k) (49)

This example may be used to interpret the physical meaning of A!U(k) which appear in Eqs. (40),

(41), (44), and (45). It is thus clear that Al*(k) is, as is the specular reflection term, a property of

14



IIthe uniform panel; the ribs do not influence this factor. It is noted that Zf(k) and GL(k), as stated

in Eqs. (14) through (25), are symmetric in k and, therefore, so is AU(k); that is

Zf (k) = Zf(- k) ; G' (k) = G' (- k) ; A .,(k) = A.(- k) .(0

[cf. Eq. (41).] Typical characteristics of A .(k) are illustrated in Fig. 3. In this figure the

magnitude of AL(k) is displayed as a function of the normalized wavenumber (k/icl), where ic1 is a

wavenumber scale factor. In Fig. 3 the frequency is fixed at ("t/opc) = 0.4, the angle 4 of

incidence is fixed at zero; kyI = 0, and the panel is membrane-like and isotropic; kp = kpy, with lo

as specified in Eq. (17b) and the mechanical loss factor ip is set at 0.005. In Fig. 3a the fluid

loading parameter E is fixed at 0.1 and in Fig. 3b, at 0.001. Of interest are the peaks at the sonic

and at the free wavenumbers; at the sonic wavenumber, AL(k) - 1. The ridges associated with the

peaks at the sonic wavenumber are more prominent when the value of the fluid loading parameter

is lower. On the other hand, the free wavenumber decreases as the fluid loading is decreased.

Beyond the free wavenumber, the magnitude of A(k) diminishes quickly with increase in the

wavenumber (k/c); the mechanical surface impedance of the panel increases and the fluid loading

decreases with increase in the wavenumber beyond the free wavenumber. The symmetry of AL(k)

in k is evidenced in Fig. 3.

The factors R,(k I k,) and Rs,(k I k1) are influenced directly and critically by the properties

of the ribs; this is in addition to their dependence on the properties of the panel. Examining the
=1

factor Rsx(k I k1) first, it is noted that this quantity is aliased in k with respect to the harmonics

n.(= jic 1) of the separation wavenumber ic1 between adjacent ribs; ic1 = (2itfb). This aliasing is

defined by

Rsx(k Ik1 ) = Rsx( k + =1 r I kj) (51a)

Typical characteristics of this factor are illustrated in Fig. 4, where the magnitude of Rsx(k I k1),
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stated in Eq. (46), is displayed as a function of the normalized wavenumber (k/K1) with the

normalized frequency (q/wc) fixed at 0.4, the angle 01 of incidence fixed at zero; ky, = 0, the

panel is membrane-like and isotropic; kp = kpy, the free wavenumber kpo is specified in Eq. (17b)

and the mechanical loss factor ip is set at 0.005; the line impedance of the ribs is assumed to be

mass controlled; Zj = Z = ioM, with (M/bm) set at 0.3, the separations between adjacent ribs is

fixed at (bo/c) = 16, the aperture in the collimated incident pressure wave is 20b, and the fluid

loading parameter , is fixed at 0.1. In Figs. 4a and b Eq. (46a) is employed with 01 = 0.9 and

zero, respectively. In Fig. 4c Eq. (46b) is employed with 01 = 0.9. The aliasing of Rsx(k I kI) in
=1

k is clearly apparent in Fig. 4.3 In Fig. 4b, in addition, the factor Rsx(k I ki) is symmetric.

Indeed, this factor is symmetric whenever k, = nx1; namely

=1 =1Rsx(k Ikl) = Rsx(-k Ikl) ; k, = nicl (52a)

[It is noted that A.(k) is symmetric in k as specified in Eq. (50); however, this quantity is not

aliased in k. Consequently, the reflection coefficients due to ribs are not aliased; i.e., neither

-1 -1 =I = I
-Rs(k]k) nor R,(k Ikl) is aliased, whether Rsx(k I k1) or Rs(k I k,) are aliased or not.] Features of

interest in Fig. 4 are the peaks at the diffraction orders (including the zeroth). In Fig. 4b the zeroth

diffraction order is located at (k/K1) = 0, and symmetry, and not only aliasing, reigns. It is

observed that Figs, 4a and c differ with respect to the wavenumber variable k. This difference is

completely accounted for by the factor Bs (k), which, in turn, accounts completely for the

wavenumber dependence of the interactions among the ribs. (It is noted that the factor BI is

independent of the wavenumber k.) The factor Bs (k) is clearly aliased and symmetric in k; namely

3The general values, aliasings, and symmetries shown in the displays of the computations
performed in this paper are valid only to within the finiteness of the samples and the rounding
errors that are built into the computer program employed in the calculations and in the graphical
presentations.
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BI I(k,) =B - k) = BIk + 5,)

Figure 4d depicts the magnitude of the factor BI (k), stated in Eq. (47a), as a function of the

normalized wavenumber (k/Kl) for the corresponding conditions and parametric values used in

Fig. 4a. Interesting features are the considerable excursions in the values of Bs(k) as a funrition of

(k/Kl). Yet, the aliasing and the symmetry in k are clearly visible. Close observation indicates that

Bs (k) substantially accounts for the differences in Figs. 4a and c. The more profound significance

of this factor is subsequently discussed.
=1

T factor Rsk I ki ) is examined next. In general, this factor is neither aliased nor

symmetric in k. However, if the separations between adjacent ribs are equal then R,(k I k1) is

aliased in k; i.e.,

=I I
Rs(kIk)=Rs(k+rIkl) ; Ix,+1 -x =b (51b)

[cf. Eq. (51 a).] Moreover, if the incidence wavenumber kI is harmonic in w, then the factor

R,(k I k1) is also symmetric in k; i.e.,

=I =IR(kl[kl) =Rs(-k [kI) ; xn+l - xn[ b, k, = nxl (52b)

[cf. Eq. (52a).] Figure 5 shows typical characteristics of this factor. In this figure the magnitude

of Rs(k I kl), stated in Eq. (42), is displayed as a function of the normalized wavenumber (k/l)

with the normalized frequency (qk.) fixed at 0.4; the angles 01 and of incidence of a plane

pressure wave are fixed at 0.9 and zero, respectively; the panel is membrane-like and isotropic;

kp kpy, the free wavenumber kpo is specified in Eq. (17b) and the mechanical loss factor Tp is

set at 0.005, the line impedance of the ribs are assumed to be mass controlled; Z = Z = icoM, with

(Mbm) set at 0.3, where b is a typical (averaged) separation between adjacent ribs and (b4o/c) =

16, the aperture is 21 ribs (= 20b), and the fluid loading parameter is fixed at 0.1 and Eq. (48) is
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applied. In Fig. 5a the variations in the separations between adjacent ribs are randomly selected

but not to exceed 0.lb. In Fig. 5b the separations between adjacent ribs are selected to be equal.

Features of interest are the lack of aliasing, especially at the higher wavenumber range, shown in

Fig. 5a. Also of interest is the favorable comparison between the prominences in Fig. 5b and the

corresponding prominences in Fig. 4a.3

From the nature of Eqs. (40) through (47) in the formalism here developed, it emerges that

changes in the parameters that define the uniform panel, the fluid loading, the separation

wavenumber of the uniform ribs, and the incident pressure wave do not cause modifications in the

aliasing and the symmetry of the quantities and factors that describe the reflection coefficients. The

invariance of symmetry and aliasing, however, is limited to the particular models of the structure

and to the uniformity of the environmental loading. As Eq. (38) indicates, even within the confine

of simplified models, there are models for which this invariance may not be relevant. With this

final observation attention is now turned to a more thorough examination of the nature of the

reflection coefficients of ribbed panels immersed in uniform fluids.

COMPUTATIONS AND DISPLAYS OF THE REFLECTION COEFFICIENTS

The computations of the reflection coefficients performed and displayed herein are by no

means exhaustive of either the capabilities of the formalism or the interest; they are merely

representative. Thus, the quantities and parameters that describe the uniform panel and the ribs are

kept simple, for the most part, ; e.g., the line impedances of the ribs are considered to be mostly

mass controlled [2, 3]. It follows that the displays exhibit only some of the features in the

reflection coefficients. In addition, only the magnitudes of these quantities are shown. These

magnitudes are displayed as functions of the normalized wavenumber (k/i l ) at successive and

equal increments of the normalized frequency (w/ho.) for a number of fixed values of (k, I Kl).

[It is noted that (ky /k1) = tan(4,).] To reduce the information in the displays, only prominences

are exhibited; this is achieved by clipping the magnitudes by a threshold. In the displays here
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presented, the threshold t 0 is a constant number assigned to each figure. The format of such

computations and displays was adopted in recent papers by the authors. In these papers the

response of ribbed panels that are driven by external mechanical line drives are described [2,3].

Nonetheless, the format is akin and suitable to be used for the purposes of this paper. Here then

this format is standard. It is more usual to confine displays of the reflection coefficients only to the

supersonic region of the spectral domain. This region is defined by (k2 + ki) <(Y /c)2 .

Moreover, often only the evaluations of the peaks at the specular and the diffraction orders are of

concern [4]. The displays presented in Figs. 6 through 10 cover the lower wavenumber portions

of the subsonic regions as well as the entire supersonic regions. In addition, the distributions, -

not just the peaks - of the prominences in the reflection coefficients are displayed. Included in

these displays are prominences that are not strictly of the diffraction orders. These prominences

are induced by the excitation of the structural resonances that are excited, on the one hand, by the

spectral distributions in the incident pressure waves and, on the other, by the wavenumber

conversion induced by the ribs for the ribs. The prominences at the spectral region defined by the

free wavenumber in the panel and their aliasings, generated by the periodicity in the spacing of the

ribs, are of particular significance in this category [2,3].

To avoid repetitions in the figure captions and to help with the interpretation of and

comparison between figures, it is convenient to set standard conditions and values of quantities and

parameters so that only deviations from these standards need be specified. Thus, the standard

panel is an isotropic membrane that simulates the response of a plate responding in flexure;

namely,

kp-=kpy ; kpf=kpo(1-iTIp) ; k =(oxo/c 2) ;

The standard loss factor Tip of the membrane is equal to 0.005, the standard free wavenumber kc

[=(wcq/c)] at the critical frequency is set equal to (bk,) = 16; the separations between adjacent ribs
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are equal and designated by b, the standard fluid loading parameter ec[= (pccom)] is equal to 0.1;

the standard line impedances of the ribs are equal, ;. = Z, and are mass controlled, Z = icoM, with

(M/bm) = 0.3; the standard angles {0O, .1} of incidence are equal to {0.9, 01; and the standard

aperture is 20b which typically spans 21 ribs. The standard coverage in the wavenumber-

frequency domain is extended over the range - 1.5 ! (k/K1 :) < 3.0 and 0 < (co1 / c) < 0.6.

[cf. Figs. 3 through 5.]

Figure 6a displays the magnitude of the reflection coefficient R. (k I kI) in the standard

format and under the standard conditions for a first order model of the ribbed panel. [cf. Eq. (42b)

and (47).] The diffraction orders are clearly discernible, as is the scattering of the incident pressure

wave into (subsonic) components that drive the (resonance) free waves in the panel. In this case

the free waves are dispersive as stated in Eq. (17b). This dispersion is readily recognized in Fig.

6a when the free waves are compared with the negative first order diffraction loci. Both

prominences that are associated with the diffraction orders and the free waves will be absent in the

absence of ribs; see Eq. (33b). Figure 6b displays the magnitude of the reflection coefficient

-ARs (k I k,) in the standard format and under the standard conditions for a proper model of the ribbed

panel. A major difference between Figs. 6a and 6b emerges. In Fig. 6b the phenomenon of "pass

and stop bands" is outstanding; this phenomenon is directly related to the full interactions among

the regularly spaced ribs [5]. Clearly, in a pass band the influence of the ribs is faded, and

enhanced in a stop band. The fadings and the enhancements are not confined to the diffraction

orders, but to all the forms of scatterings; e.g., to the generation of the fre'. waves and the aliasings

thereof. The influence of the pass and stop bands on the reflective properties of ribbed panels are

thus reminiscent of the influence of this phenomenon on the response of ribbed panels to localized

drives [2,3]. In the former the "drive" is localized in the wavenumber domain (k-domain) and in

the latter in the spatial domain (x-domain). The pass and stop bands manifest characteristics of the

ribbed panel, be it excited by one drive form or another. The reminiscence is expected. Fig. 6c

displays the effect of introducing a 10% randomly selected variations in the separations between
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adjacent ribs; (Ab/b) < 10"1, where Ab is a typical variation in the separation between adjacent

ribs. The spoiling, by these variations, of the pass and stop bands and the aliasing is demonstrated

in this figure, notwithstanding that only the low wavenumber range, namely (kAb)2 < 1, is used

in the display.4 The spoiling is severe in the higher wavenumber range, where (kAb) 2 > I , and

the spoiling is more severe the higher the inequality. [cf. Fig. 5a.]

Figures 7a and b correspond to Fig. 6b except that in these two figures the normalized

wavenumber at the critical frequency is changed from that of the standard value of (bkc) = 16 in

Fig. 6b, to (bkl) = 8 and (blc) = 24, respectively. This change is commensurate with a change in

the separation b between two adjacent ribs and a corresponding change in the mass per unit length

M of the ribs so that (M/bm) is maintained at the standard value of 0.3 [2]. To maintain a decor,

the normalized wavenumber scale is appropriately changed in Figs. 7a and b. The observed

changes born by these figures as compared with Fig. 6b, are as expected.

Figures 8a and b display the results of computing the magnitude of Rsx (k Ik1) in the

standard format and under standard conditions for a first order model and a proper model of a

ribbed panel, respectively. Figure 8a should then be comparable with Fig. 6a, and Fig. 8b with

Fig.6b. Clearly major correspondence is found in these comparisons. However, some details do

not correspond in these comparisons. What is different in the two sets of descriptions of the

panels and the incident pressure waves that may contribute to the observed disparities? In the first

set, Figs. 6a and b, the aperture is related to the finite number of ribs; beyond this aperture the

4The aliasing in k is a phenomenon that is wavenumber (and, therefore, also spatially in x) related.
On the other hand, the pass and stop bands is a phenomenon that is often viewed as frequency
related. However, as is apparent from comparison of Eqs. (42a) and (46a) with Eq. (42b) and
(46b), the interactions amonf the ribs are wavenumber k (and, therefore, also spatially x)
dependent; e.g., the factor Bjk) versus the factor B0. Indeed, the spatial regularity that is essential
to the phenomenon of aliasing is also essential in these interactions for the phenomenon of pass
and stop bands to arise. Thus, disturbing the regularity of the separations between adjacent ribs is
bound to influence both these phenomena. In this sense the two phenomena are related.
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panel is bold of ribs. In the second set, Figs. 8a and b, the aperture is related to the incident

pressure wave and beyond this aperture the panel is regularly studded with ribs. It is thus not

surprising that details do not correspond in the two sets, even if the quantities displayed are in

terms of magnitudes and prominences, notwithstanding that the absence of pass and stop bands

in Fig. 8a is recovered in Fig. 8b, as is the case with respect to Figs. 6a and b, respectively.

The interactions among ribs that are regularly separated give rise to the phenomenon of pass and

stop bands which in turn are clearly visible in the reflections and scatterings that are caused by the

ribs [5].

Figure 9a displays in the standard format the co iputational results of the magnitude of the

reflection coefficient R0 x (k Ik,) in the absence of ribs, as stated in Eq. (44), for the standard angles

of incidence; {01, OI} ={0.9, 0.01. It shows that the distribution with respect to the normalized

wavenumber (k/c) is fairly wide and contains even subsonic components of significant

magnitudes. Of course, the distribution in the reflection in the absence of ribs bears a factorial

correspondence to the distribution in the incident pressure wave. Indeed, the distribution is largely

determined by the nomalized aperture function F,(k-kl) in Eq. (44). It is observed that whereas

the incident pressure wave with respect to Fig. 6 is highly localized in the k-domain, with respect

to Fig. 8, it is broad and contains significant components even in the subsonic range. In this sense

the remark made with respect to the lack of detailed correspondence between Figs. 6 and 8 is

further strengthened. Indeed, some of the discrepancies in details between Figs. 6 and 8 may be

explained talkng account of these very differences in the respective incident pressure waves. [cf.

Section V.] In Figs. 9b, c, and d the standard angles of incidence are changed from {0.9, 0.0} to

{0.3, 0.01, {0.9, 0.3}, and {0.3, 0.31, respectively. Of particular interest are Figs. 9c and d,

where the introduction of a none-zero d is accommodated. The results of this introduction

conform to expectation.

Figure 10 displays in the standard format the magnitude of the reflection coefficient

R1 (k I k,) for three of the four incident pressure waves that are covered in Fig. 9. A comparison of
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Fig. 10a with Fig. 8b illustrates the influence of including the reflection in the absence of ribs in

the displays. The changes that occur with changes in the incidence angles may be deduced from

comparisons of Fig. 10a with Figs. l0b and c. A point of interest is that the peaks at and in the

vicinity of the specular angles are influenced by the reflection coefficients due to ribs indicating that

the zeroth order diffraction by the ribs may be significant. The significance, however, varies with

frequency.

There are many more issues that arise in the investigation of the reflective properties of

ribbed structures. It may be proper to discuss a number of these issues in this paper. The purpose

is to show that such issues can be conveniently and further addressed within the realm of the

formalism and computational procedures herein developed. The issues to be singled out and

briefly discussed are related to the effects that are associated with changes in aperture, with

focussing and extension of the ranges displayed, with fluid loading, and, finally, with reflection to

the far-field.

APERTURE EFFECTS

The larger the aperture the sharper are the distributions in the reflection and response, as a

function of the wavenumber that lies in the direction of the aperture. Figure 11 illustrates this

statement. This figure repeats Fig. 10a with a change in the aperture from its standard value of 20b

(- 21 ribs) to 42b (- 43 ribs). Comparing Fig. 11 with Fig. 10a indeed illustrates the increase in

sharpness of the distributions of the reflection coefficients defined in Eqs. (43) through (46).

FOCUSSING AND EXTENSION OF THE DISPLAYED RANGES

The displayed figures (Figs. 6 through 11) are limited to the standard wavenumber -

frequency range defined by - 1.5 < (k/K1 ) < 3.0 and 0 < (0/ho,) < 0.6. An occasion may arise in

which one may wish to focus the display on a specific sub-range. In Fig. 12a the display focuses

on the sub-range - .75 :. (k/Kc1) < 1.5 and 0 < ("/o c) < 0.06 of Fig. 10a. The focussing
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increases the details in the reflection coefficient that pertain to the selected sub-range. On the other

hand, an occasion may arise in which one may desire to display the reflection coefficient more

extensively than is displayed in a standard figue. Figure 12b extends the display depicted in

Fig. 10a from its standard range to the wavenumber-frequency range defined by

- 3.0 < (k/Kl) ; 6.0 and 0 < (w/o c) ! 2.4. Of particular interest is the extension into the

frequency above the critical frequency; i.e., into the frequency range (co/cc) Z 1. In this range the

free waves in the panel approach and become supersonic. The process of taking the free waves

from just below the sonic range to that above it is compounded but of special interest. Such

specific considerations are, however, beyond the scope of this paper. Again, the purpose is

merely to point out that such considerations lie within the realm of the formalism and within the

computational capabilities employed herein.

FLUID LOADING EFFECTS

Fluid loading effects on the reflective properties, in particular, and on the response

properties, in general, are of interest to the investigation of the vibro-acoustics of ribbed panels.

Many questionable rule-of-thumbs exist in this regard. Can the reflective and response properties

of ribbed panels be estimated by ignoring fluid loading in some, but not in other, terms and factors

in the formalism that accounts for these properties? Does fluid loading dull the sharpness of the

patterns of the prominences (and valleys) in the displays of the reflection and response quantities of

ribbed panels? Does fluid loading effects favor supersonic and disfavor subsonic components in

these quantities? In what manner does fluid loading influence the phenomenon of pass and stop

bands? Obviously, the answers to these and other relevant questions cannot be given within this

paper. However, an attempt will be made to illustrate elements that may be involved in formulating

these kind of questions and providing such answers.

It is apparent that some of the discrepancies in details between Figs. 6 and 8 are related to

the fact that whereas fluid loading is introduced cavalierly and heuristically in the computations
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leading to Fig. 6 via Eq. (48), in the computations leading to Fig. 8, fluid loading is properly

accounted for. The measure of the influence of fluid loading on the reflective properties of a ribbed

panel is made clear by comparing Figs. 6b and 8b with Figs. 13a and b, respectively. In the latter

set of figures, the fluid loading parameter cc and, by necessity, also the threshold to, are changed

from the standard values of 0.1 and 0.03, respectively, to 0.001 and 0.001, respectively. The

changes in the patterns in the two sets of figures are clearly significant However, these changes

can be readily accounted for; e.g., the observed decrease in the free wavenumber kp0, as one

proceeds from Fig. 6b to Fig. 13a, is as specified in Eq. (48). The corresponding decrease in kp0,

as one proceeds from Fig. 8b to Fig. 13b is more naturally, but less explicitly, accounted for. It is

interesting that, by and large, the correspondence between Figs. 13a and b is better than that

between Figs. 6b and 8b. The ridge at the sonic loci, which is more visible in Fig. 13b than in

Fig. 13a, is not an artifact. It is governed by the factor AL(k), stated in Eq. (41) and relevantly

illustrated in Fig. 3. [cf. the next section and Ref. 6.] The prominences in the reflection

coefficients illustrated in Fig. 14 are computed with fluid loading only partially accounted for. In

this figure the fluid loading is accounted for only in the factor AL(k), in Eqs. (42a) and (46a); in
=I

the remaining factors fluid loading is neglected; namely, e is set equal to zero in R,(k I k1) and

Rsx(k I kl), stated in Eqs. (40) and (45a), respectively. The comparison between Figs. 14a and b

is reminiscent of that between Figs. 6b and 8b, or even between Figs. 13a and b, respectively. It

is observed that the specified neglect of fluid loading does not undermine the overhaul

correspondence between Figs. 14a and b; except for details, the patterns in these figures are fairly

identical. However, comparison between Figs. 6b and 13a and Fig. 14a, and between Figs. 8b

and 13b and Fig. 14b indicate the dangers that beset the partial negligence of fluid loading in these

specific and other manners. In the first comparisons, between Figs. 6b and 8b, and Fig. 14, the

free wavenumber appears satisfactory, but not the positions of the pass and stop bands. In the

second comparisons, between Figs. 13a and 13b, and Fig. 14, the situation is the reverse of the

first. Again, it is noted that except for details, Figs. 14a and b bear between them a resemblance as
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good as the resemblances between Figs. 6b and 8b and Figs. 13a and b, respectively. Thus, there

are partial and mixed agreements and disagreements; hence, the caution for the dangers.

The Comparisons between the various figures and set of figures that the reader was asked to

perform were not simple, primarily because each figure contained a large volume of information.

Some relief is provided by employing thresholds; further relief is afforded by the similarities of the

patterns in the compared figures. Will it not be useful and of interest to investigate the influence of

fluid loading on major characteristics of the reflective (and the response) properties of ribbed

panels without the clutter of excessive information? An opportunity for such an investigation lies

in Eq. (47a). It is noted that the factor B. (k), defined by

--is(k) = B' , (k) [B'] - ' 4b
DsL=s 0LLo (47b)

accounts completely for the interactions among the ribs, and hence, in turn, the description of the

pass and stop bands lie completely within this quantity, despite that not all the interactions among

the ribs contribute directly to the phenomenon of pass and stop bands [5]. One may then use Bs (k)

to investigate the extent and the manner by which fluid loading may influence the pass and stop

bands, notwithstanding that this quantity is locked into a model in which the panel is regularly

ribbed so that situations in which the equality in the separations between adjacent ribs is disturbed

cannot be investigated with B. (k). (To investigate how the influence of fluid loading is coupled to

variations in the separations between ribs, one needs to switch from Eq. (21) to Eq. (18). Such

considerations, however, lie outside the scope of this paper.) Since the factor B, is independent of

k, the quantity B,(k) is aliased and symmetric in k in the manner specified for Bs(k) in Eq. (53).

Figure 15 is intended to illustrate the invariance of these properties to changes in the parameters

that describe the regularly ribbed fluid loaded panel. Indirectly, but clearly, the influence of the

same changes on the phenomenon of the pass and stop bands is also illustrated in this figure.4

The magnitudes of B.(k) as functions of the normalized wavenumber (k/ic1 ) for discrete,

successive, and equal increments of the normalized frequency (o /o c) are displayed in Fig. 15. In
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Fig. 15 the threshold to is conveniently chosen to be 1.5. [cf. Fig. 4d.] In Fig. 15a, the standard

conditions are maintained. In Fig. 15b the fluid loading parameter ec is changed from its standard

value of 0.1 to the much lower value of 0.001. Although the phenomenon of pass and stop bands

is manifested more distinctly in Fig. 15b than in Fig. 15a, it is still amply evident in the latter

figure. Figures 15c and d depict situations which correspond to those depicted in Figs. 15a and b,

respectively, except that the standard value of the surface mass ratio (M/bm) is changed from its

standard value of 0.3 to the high value of 3x103; in this case, the magnitude of the line impedance

ZI of the ribs exceeds by far the magnitude of the line impedance gI of the uniform panel. Even in

this extreme case, the pass and stop bands are evidenced and, again, the fluid loading does not

substantially suppress this phenomenon. Figures 15a and b are repeated in Figs. 15e and f for

situations in which the separation b between adjacent ribs is decreased so that bk c = 4 and the

mass per unit length of the ribs is proportionately decreased so that (M/bin) is maintained at its

standard value of 0.3. The phenomenon of pass and stop bands is present in Figs. 15d and e, in a

similar fashion to its presence in Figs. 15a and b, respectively. The aliasing and the symmetry of

B' 5 (k) in k are evidenced throughout Fig. 15, thus confirming the invariance of these properties in

this factor to changes in the parameters that describe a regularly ribbed fluid loaded panel. Finally,

the invariance of aliasing in Bs(k) in k indicates that the introduction of fluid loading does not

cause biases in the k-domain in favor or disfavor of low and high wavenumber distributions.

Thus, one may conclude that the interactions among the ribs cannot be made to distinguish between

low and high wavenumber components in the k-domain. [cf. Appendix A.]

REFLECTION COEFFICIENT IN THE FAR-FIELD

The reflection coefficients defined in the preceeding sections are related to the pressure

waves perceived on a plane that is placed on the surface of the panel. One may ask for the

corresponding reflection coefficients were one to assess the reflected pressure waves on a control-

semi-cylindrical surface in the far-field. The far-field reflected pressure wave due to the collimated
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incident pressure wave specified in Eq. (37), say, is given by

r1  ( ~1/2~ 2 [(yIc 1 c
p (r,9) = P10  ) (r/2) /C)r]

r=(x2 +z 2) 12 ; (cor/c) >  1 , (55)

where H0
2) is the Hankel function of the second kind and of order zero [6]. Explicitly, the factors

IixT(e) and Y1 are of the forms

I()= cos(0) R( Ik) ; f= (Yf o/c)sin (8) (56)

Y= [1- (ky1c/o") 211 2 ; (kylc/o) 2 < 1 , (57)

and RX(k I k1) is as stated in Eq. (38). The quantity x()is limited to the supersonic components
Iin Rx(k I k,) only. The subsonic components do not reach the far-field; they are filtered out by the

passage through the fluid from the surface of the panel to the far-field locations. The far-field

reflection coefficient Fx (9) is defined

fx(o) = (2n/Lx) rI(o) (58)

[cf. Eq. (39).] This quantity is, in fact, merely a directivity factor describing the directivity of the

reflected pressure waves in the far-field. [1x (9) is related generically to the reflection "form-

function" in cylindrical geometry [8].] The regularly ribbed fluid loaded panel is chosen as a

computational example. Accordingly Eqs. (43) through (46) are substituted in Eqs. (56) to obtain

rI(o) = TI(o) + FrX (O) '(59)

rlx(0)= Ycos(O) [1 - 2AL(iC)] F(K1 - kl) (60)
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S,(O)-Yfcos()AI(K ) R'(C 1k) (61)

where Rsx(k I k,) is defined in Eq. (46) and it is noted that

AL'= [{z21 (Kc')/pc} '4cos (8) +l]Ii ,(2

where Zp(k) is defined and stated in Eqs. (16) and (17). The magnitude of fl(0), as stated in

Eqs. (59) through (61), is displayed as a function of 0 in Fig. 16. In Figs. 16a, b, and c the

normalized frequency (col / c ) is set at 0.25, 0.4, and 0.5, respectively, the standard conditions are

imposed, and the first order model is assumed; i.e., Rsx(k I k,) in these figures is expressed in

Eq. (46b). In Figs. 16d, e, and f the respective normalized frequencies and standard conditions

are imposed, however and notably, the proper model is assumed; i.e., Rsx(k I kl) in these figures

is expressed in Eq. (46a). The normalized frequency (" I /coo) = 0.25 is chosen so that the first

negative diffraction order coincides approximately with a monostatic return, and the normalized

frequency (" /co) = 0.5 is chosen so that the second negative diffraction order coincides

approximately with a monostatic return. [In the latter case the first negative diffraction order

coincides approximately with a normal return, see Figs. 16c and f.] The differences between the

figures in the three pairs: Figs. 16a and d; Figs. 16b and e; and Figs. 16c and f, can be attributed to

the phenomenon of pass and stop bands. This phenomenon influences significantly the highlights

in the results reported in Figs. 16d, e, and f. Features of significance in Figs. 16a, b, and c are

largely modified, and are even absent, in Figs. 16d, e, and f. [cf. Figs. 8b and a.] Thus, when

structural regularities are present in a structure, the reflection of pressure waves by the structure to

the far-field may depend critically on the existence and disposition of the phenomenon of pass and

stop bands. Since the pass and stop bands phenomenon is sensitive to various parameters that
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describe the structure and its environmental loading, the determination of the highlights in the

reflection from such a structure cannot be cavalierly approximated.

Figure 16g repeats Fig. 16e except that the fluid loading parameter Sc is changed from the

standard value of 0.1 to 0.001. By comparing these figures and consulting previous figures, e.g.,

Figs.8b, 10b, and 13b, it is clear that in Fig. 16g the contribution to the far-field reflection

coefficient F (0) by the term FI(0) is overriding. This statement is made clear by presenting

Fig. 16h, in which the term 18 (0) only is displayed. Thus, when structural regularities are

present in a structure, the reflection of pressure waves by the structure to the far-field may not

necessarily exhibit a dependence on the phenomenon of pass and stop bands; other diffraction

mechanism may be dominant. Even in this simplified model of the structure it appears that

multiplicity of angular variations occur in the reflection and that these variations are sensitive to

parameters that describe the structural form, e.g., apertures in the structure and in the incident

pressure wave.
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APPENDIX A

There are some advantages in investigating the nature of the factor B, (k, W2) in the spatial

domain. If one denotes by gls(x I x', 02) the impulse response function for a first order model of a

regularly ribbed fluid loaded panel and the corresponding impulse response function for a proper

model by g. (x I x', 0 2),then by definition

gs(x I X', L2) = f bs(x - xh, 0 2 ) dx" gls(x" I x', 2 ) (Al)

where [1]

bS(x, W2 ) = (2 )- 112 f Bs(k, 02 ) dk exp (-ikx) (A2)

gs(X Ix', W2) = (27t) -i f Gs(k Ik', QL2) dx dx'exp [i(xk-x'k')] (A3)

Using the aliasing and symmetry properties of Bs(k, (9 2 ) in k, one may state Eq. (A2) in the form

bS(x' L2) = (2n)la .s b(xj, W2 ) 8(x- xj) ; b,(xj, 02) = bs(-xj, Q2) 4

where

b3(xj, L02) = (K 1F' fK Bs(k, L02) dkexp(-ikxj (M5)

It is recalled that the aliasing and symmetry of B (k, fL2) in k is invariant to reasonable changes in

the parameters that describe the regularly ribbed fluid loaded panel and, therefore, Eqs. (A4) and

(5) are similarly invariant. A Fourier transformation of Eq. (A4) yields
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Bs(k, L02) = js b(xj , L2) exp(ikxj) (A6)

Thus, b. (xj , 002) is the (j)th coefficient in the Fourier series expansion of Bs (k, 02) with respect

to k. For the records, it may be noted that

Z H.(k + tCp 0 =2) (0) 9 L(xj, L2) exp(ikxj)j (A7)

From Eqs. (Al) and (A4), one obtains

gs~xl x j f )- s(Xp 2) gls( X - Xj I X,2) (A8)

A Fourier transformation uf Eq. (A8) yields

Gs(k Ik', L2) = Bs(k, L02) Gis(k k', f2) , (A9)

where use is made of Eq. (A6). The factorial relationship in Eq. (A9) between Gs and Gs in the k-

domain is convenient, as the material in the text made clear. [cf. Eqs. (21) and (46).] Can one

obtain a similar factorial relationship between gs and g1s in the x-domain? One may, in this vein,

construct from Eq. (A8) the form

g(x I x', L02) = [ L(O, fO2) + ys(x I x', L2)] gis(x I x', f 2) (AlO)

where

s(X I x', L02) = . b5 (xj, L2) {g1,(x- xj I x', L2) / gis(x ; X', (2)} (

j S0 (A11)
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It is apparent that Eq. (AlO) is not as elegant and straightforward as Eq. (A9) is. However, it is

asserted that the term b., (0, L02) is a significant term in the bracketed factor in Eq. (A10) and,

therefore, its behavior is significant to the relationship expressed in Eq. (A10). At least Eq. (A10)

is more compact than is the equation obtained ',ectly by a Fourier transformation of Eq. (18).
=1

The magnitude of the zeroth coefficient b, (0) as a function of the normalized frequency (q /wr)

under standard conditions is computed and displayed in Fig. Al. In Fig. A2 the fluid loading

parameter Ec is changed from its standard value of 0.1 to 0.001. The pass and stop bands

phenomenon is made apparent in this zeroth coefficient. It is also apparent that increase in fluid

loading tends to dull this phenomenon. The investigation here proposed remains incomplete

without some examination of the behavior of y, in Eqs. (A 10) and (A 1). However, this

examination lies outside the scope of the paper in which Eq. (A9), rather than Eq. (A8), is basic.

In this sense, Fig. A, displaying bs (0), may be viewed as the integrated measure of Fig. 15,
-I

displaying Bs (k).
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.2 0 2 4 6

b) C,= 0.001.

Fig. 3. The magnitude of the factor A_(k) fEq. (41)] as afunction of the normalized
wavenumber (k/ic1) at the fixed normalized frequency (cii~fi) = 0.4 with 01= 0. The
panel is an isotropic membrane that simulates a plate responding in flexure. The free

wavenumber k4 (WMIII)1 (I + Vr~ and the loss factor Tis chosen equal to 0.005.

10*

a) (Ab/b) < 0. 1 (k/ic1)

10

Fig. -S. The magnitude of the factor R*(klk1) [Eq. (42a)1 in the reflection coefficient due to
the ribs as a function of the normalized wavenumber (k/ic,) at the fixed normalized frequency
(w1/wJ = 0.4 with %1 = 0.9 and i - 0.0. Incident pressure wave is a plane wave. The
panel is as in Fig. 3a. The line impedance of the ribs is mass controlled Z,= Z = iwtM with
(M/bm)=0.3. E, - 0.1 and (baI) = 16, where mnis the mass per unit area of the panel and
b is a typical separation between adjacen ribs. A typical deviation in b is designated by ftb.
The array consists of 21 ribs.
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a) The factor I RuI in the proper model with 01 0.0. (hj

b) The facor I R. Iin roer model with 8, 0.0.1.

-I

Flg.4 The magnitudes of R,, and the factor B1. [Eq. (46a)J in the reflection coefficient
due to the ribs as a function of the normalized wavenumber (k/ic,) at the normalized
frequency (aycoj =-0.4 with ,= 0. The incident pressure wave is coliminaed with an
aperture of 21 ribs. The panel is as in Fig. 3a. The line impedances of the ribs are mass
controlled, Z, = Z - icM with (Mibmn)= 0.3. and (WA -) 16, where mis the mass
per unit area of the panel and b is a typical separation between ribs.
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Fig. 7. Magnitude of the reflection coefficient R'(klk1 ) for the proier model lEq. (42a)I s
function of the normalize waventumber (klic,) in the standard format and under standard
conditions with the exception that instead of the standard value of (kb) - 16, the value is as noted.
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Fig. S. Magnitud of the reflection coefficiet F.Clklk,) due to ribs [F q.(46)) as
function of Ohe normalized wavenumber (k/ O in the standard format and under standard
canditions.
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FIg.9. Magntitude of the reflection coefficient iajklkl) in the absence of ribs (Eq. (42)] as a

function of the normalized wavenumber (k/Kl) in the standard format and under standard

onditions.for the panel except for the angles of incidence as noted.
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Fig. 9 continued.
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Fig. 10. Magnitude of the reflection coefficient i, tIdkl) IEq.(43)] as a function of the

normalized wavenumber O(00t in the sandard format and under standard conditions

except for the angle of incidence as noted.
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Fig. 12. Repeamz Fig.IW with a dump in the waveumber-frequom cy range displayed from the

stadard rane -1.5 s; WKI() S; 3.0 ad 0 < (c/w):$ 0.6 to the values noted.
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Fig. 13. Magnitude of the reflection coefficient cept that the value
for the fluid loading paranaeter, E . aid the thresiold, t?, are changed
fronm their standard values of 0. 1 and 0.03, reqiecuively. to 0.001
and 0.001. reqiectively.
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partially accounted for; namely only in the factor A.M.
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a) First order model and (co1 /b) = 0.25. d) Proper order model and (wxj /b) 0.25.
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g) Repeats Fig. lhe except that the fluid h) The magnitude of the far-field reflection
loading parameter e, is changed from its coefficient due to ribs under standard
standard value of 0. 1 to 0.o001. conditions except fluid loading as in Fig. 16g.

Fig. 16. The magnitude of the far-field reflection coefficient in a polar plot with respect to the angle (0).
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as a function of the normalized frequency (ojfto) under standard conditionL
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Fig. A2 Repats Fig. Al except that the fluid loading parmneter c is changed from the
tandard value of 0.1 to 0.001.
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